

Multi-position Air Handler EAHDEN-24ABA

TAG:

SUBMITTAL

Female pipe thread (NPT)

Model	Dimensions (in.)									
	Н	w	D	Α	Liquid Line Connection	Gas Line Connection				
24/36	47-1/2	21	22	19-1/4	3/8	3/4				
48 / 60	56-1/2	24-11/16	22	22-3/4	3/8	7/8				

Manufacturer reserves the right to change specifications or designs without notice.

Product Specifications

MODEL	EAHDEN-24ABA				
Voltage-Phase-Hz	Standard 208/230-1-60, optional 115V-1-60				
Minimum Circuit Amps. ¹	5.4A				
Minimum Circuit Amps. ²	8.0A				
INDOOR COIL TYPE	Copper Tube With Hydrophilic Aluminum Fins				
Rows	4				
Tube Size	9/32				
Refrigerant Control	EEV				
Drain Connection Size (in.)	3/4 NPT				
Duct Connections	See Outline Drawing				
INDOOR FAN TYPE	Centrifugal				
Blower Diameter-Width (in.)	9-4/5"				
Fan Motor Type	ECM				
CFM vs. in. W.G	See Fan Performance Table				
Fan Motor HP	1/2				
FLA ¹	4.3A				
FLA ²	6.4A				
Filter Size (in.)	20*18				
Filter Equipped From Factory	NO				
Refrigerant	R-454B ³				
Ref. Pipe Connections	Brazed or ZoomLock				
Liquid Pipe Size (in. O.D.)	3/8				
Gas Pipe Size (in. O.D.)	3/4				
Dimensions (inch) (W X H X D)	21"x47-1/2"x23-3/10"				
Net Weight (LBS)	141				
Shipping Weight (LBS)	172				

Product Specifications (Continued)

FAN SPEED	Sound pressure level (dB)				
High	60				
Medium High	57				
Low	53				

REMARKS:

1. Reference data when the power supply is standard 208/230V1-60.

Reference data when the power supply is standard 115V-1-60.
Compatible with R410A refrigerants.

Electric Heat Data

Heater Kit Model	Nominal Power	Power		HEATER AMPS		MIN.CICUIT AMPS		MAX. FUSE OR BREAKER(HACR)AMPS		
	240	230	208	230	208	230	208	230	208	
EHK05B	5	4.6	3.8	20	18.1	25	23	30	25	
EHK08B	7.5	6.9	5.6	30	27.1	38	34	40	35	
EHK10B	10	9.2	7.5	40	36.2	50	46	60	50	
EHK15B	10+5	9.3+4.6	7.5+3.8	40+20	36.2+18.1	50+25	46+23	46+30	50+25	
EHK20B	10+10	9.2+9.2	7.5+7.5	40+40	36.2+36.2	50+50	46+46	60+60	50+50	

Manufacturer reserves the right to change specifications or designs without notice.

Airflow Performance

Airflow performance data is based on cooling performance with a coil and no filter in place. Check the Performance table for appropriate unit size selection. External static pressure should stay within the minimum and maximum limits shown in the table below in order to ensure proper airflow.

Airflow motor speed mode setting (SW1-1)					Variable airflow mode (Default)			2-stage air	flow mode		
Model	Airflow	Airflow Dip-Switch			Max Airflow (CFM)	/ (CFM)	Min Airflow (CFM)	High Airflow (CFM)	Low Airflow (CFM)	Max available Static Pressure	Remark
		SW2- 1	SW2- 2	SW2- 3	W1/W2*	G*	/	Y2/W1/W2**	Y1/G**	(in wc)	
	Airflow 1	1	0	0	700	574	400	700	574	1.2	
241	Airflow 2	1	0	1	760	623	400	760	623	1.2	
24K	Airflow 3	1	1	0	830	681	400	830	681	1.2	Default
	Airflow 4	1	1	1	880	722	400	880	722	1.2	
36K	Airflow 1	0	0	0	1050	735	420	1050	735	1.2	
	Airflow 2	0	0	1	1120	784	448	1120	784	1.2	
	Airflow 3	0	1	0	1200	840	480	1200	840	1.2	Default
	Airflow 4	0	1	1	1250	875	500	1250	875	1.2	
48K -	Airflow 1	1	0	0	1450	1015	600	1450	1015	1.2	
	Airflow 2	1	0	1	1500	1050	600	1500	1050	1.2	
	Airflow 3	1	1	0	1550	1085	620	1550	1085	1.2	Default
	Airflow 4	1	1	1	1600	1120	640	1600	1120	1.2	
60K -	Airflow 1	0	0	0	1650	1155	660	1650	1155	1.2	
	Airflow 2	0	0	1	1700	1190	680	1700	1190	1.2	
	Airflow 3	0	1	0	1750	1225	700	1750	1225	1.2	Default
	Airflow 4	0	1	1	1800	1260	720	1800	1260	1.2	

activated, the system will run at maximum airflow. However, when only the blower is operating (G), the airflow will remain constant. **In 2-stage airflow mode, the airflow will adjust according to the settings of the stages.

Notes: The airflow performance is based upon cooling performance at 230V with no electric heater and no filter. In 115V, 208V, 230V has the same airflow performance, because it has a constant airflow motor, which maintains its constant airflow output within the range of use, of course, when the maximum load of the motor may decline.

The air distribution system has the greatest effect on airflow. For this reason, the contractor should use only industry-recognized procedures to finish ductwork.

Heat pump systems require a specified airflow. Each ton of cooling requires between 300 and 450 cubic feet per minute (CFM). Duct design and construction should be carefully done. System performance can be lowered dramatically through bad planning or workmanship. Air supply diffusers must be selected and located carefully. They must be sized and positioned to deliver treated air along the perimeter of the space. Return air grilles must be properly sized to carry air back to the blower as well. Failure to follow these may cause abnormal noise and drafts.

The installers should balance the air distribution system to ensure proper quiet airflow to all rooms in the home. This ensures a comfortable living space.

